A Learning Automata based Solution for Optimizing Dialogue Strategy in Spoken Dialogue System

نویسندگان

  • G. Kumaravelan
  • R. Sivakumar
چکیده

Application of reinforcement learning methods in the development of dialogue strategies that support robust and efficient human–computer interaction using spoken language is a growing research area. In spoken dialogue system, Markov Decision Processes (MDPs) provide a formal framework for making dialogue management decisions for planning. This framework enables the system to learn the value of initiating an action from each possible state which in turn facilitates the maximization of the total reward. However, these MDP systems with large state-action spaces lead to intractable solution. The goal of this paper is, thus, to present a novel approximation method with sampling practice to compute an optimal solution to control dialogue strategy based on learning automata. Compared to other baseline reinforcement learning methods the proposed approach exhibits a better performance with regard to the learning speed, good exploration/exploitation in its update and robustness in the presence of uncertainty in the states obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Dialogue Strategy Learning Using Learning Automata

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlyi...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

Automatic Optimization of Dialogue Management

Designing the dialogue strategy of a spoken dialogue system involves many nontrivial choices. This paper presents a reinforcement learning approach for automatically optimizing dialogue strategy. We first present a practical methodology that addresses the technical challenges in applying reinforcement learning to a working dialogue system with human users. We then demonstrate how we have used t...

متن کامل

Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System

Designing the dialogue policy of a spoken dialogue system involves many nontrivial choices. This paper presents a reinforcement learning approach for automatically optimizing a dialogue policy, which addresses the technical challenges in applying reinforcement learning to a working dialogue system with human users. We report on the design, construction and empirical evaluation of NJFun, an expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012